شرح البيانات للرعاية الصحية AI

شرح البيانات الطبية التي تعمل بالطاقة البشرية

افتح المعلومات المعقدة في البيانات غير المهيكلة باستخدام استخراج الكيانات والتعرف عليها

شرح البيانات الطبية

عملاء متميزون

تمكين الفرق لبناء منتجات ذكاء اصطناعي رائدة عالميًا.

أمازون
شراء مراجعات جوجل
مایکروسافت
كوجنيت
هناك طلب متزايد على تحليل البيانات الطبية المعقدة وغير المهيكلة للكشف عن الرؤى غير المكتشفة. يأتي شرح البيانات الطبية للإنقاذ

80٪ من البيانات في مجال الرعاية الصحية غير منظمة ، مما يجعل الوصول إليها غير ممكن. يتطلب الوصول إلى البيانات تدخلاً يدويًا كبيرًا ، مما يحد من كمية البيانات القابلة للاستخدام. يتطلب فهم النص في المجال الطبي فهماً عميقاً لمصطلحاته لإطلاق العنان لإمكاناته. يوفر لك Shaip الخبرة اللازمة للتعليق على بيانات الرعاية الصحية لتحسين محركات الذكاء الاصطناعي على نطاق واسع.

IDC ، شركة محللة:

ستصل قاعدة سعة التخزين المثبتة في جميع أنحاء العالم 11.7 زيتا in 2023

IBM و Gartner و IDC:

80% البيانات حول العالم غير منظمة ، مما يجعلها قديمة وغير صالحة للاستعمال. 

حل العالم الحقيقي

قم بتحليل البيانات لاكتشاف رؤى ذات مغزى لتدريب نماذج البرمجة اللغوية العصبية باستخدام التعليقات التوضيحية لبيانات النص الطبي

نحن نقدم خدمات شرح البيانات الطبية التي تساعد المؤسسات على استخراج المعلومات الهامة في البيانات الطبية غير المنظمة ، مثل ملاحظات الطبيب ، وملخصات القبول / التفريغ ، وتقارير علم الأمراض ، وما إلى ذلك ، والتي تساعد الآلات على تحديد الكيانات السريرية الموجودة في نص أو صورة معينة. يمكن لخبراء المجال المعتمدين لدينا مساعدتك في تقديم رؤى خاصة بالمجال - مثل الأعراض والمرض والحساسية والأدوية للمساعدة في الحصول على رؤى للرعاية.

نقدم أيضًا واجهات برمجة تطبيقات NER الطبية الخاصة (نماذج البرمجة اللغوية العصبية المدربة مسبقًا) ، والتي يمكنها تحديد وتصنيف الكيانات المسماة تلقائيًا المقدمة في مستند نصي. تعمل واجهات برمجة تطبيقات NER الطبية على الاستفادة من الرسم البياني المعرفي للملكية ، مع 20 مليون + علاقات و 1.7 مليون + مفاهيم إكلينيكية

حل العالم الحقيقي

من ترخيص البيانات ، والتجميع ، إلى التعليقات التوضيحية للبيانات ، قام Shaip بتغطيتك.

  • شرح وإعداد الصور ومقاطع الفيديو والنصوص الطبية ، بما في ذلك التصوير الشعاعي والموجات فوق الصوتية والتصوير الشعاعي للثدي والأشعة المقطعية والتصوير بالرنين المغناطيسي والتصوير المقطعي بالإصدار الفوتوني
  • حالات استخدام المستحضرات الصيدلانية والرعاية الصحية الأخرى لمعالجة اللغة الطبيعية (NLP) ، بما في ذلك تصنيف النص الطبي ، وتحديد الكيان المحدد ، وتحليل النص ، وما إلى ذلك.

خدمات الشرح الطبي

تعمل خدمات التعليقات التوضيحية الطبية لدينا على تعزيز دقة الذكاء الاصطناعي في الرعاية الصحية. نقوم بتسمية الصور والنصوص والمقاطع الصوتية الطبية بدقة، باستخدام خبرتنا لتدريب نماذج الذكاء الاصطناعي. تعمل هذه النماذج على تحسين التشخيص وتخطيط العلاج ورعاية المرضى. ضمان بيانات موثوقة وعالية الجودة لتطبيقات التكنولوجيا الطبية المتقدمة. ثق بنا لتعزيز كفاءتك الطبية في مجال الذكاء الاصطناعي.

شرح الصورة

تعليق توضيحي للصورة

تعزيز الذكاء الاصطناعي الطبي من خلال إضافة تعليقات توضيحية للبيانات المرئية من الأشعة السينية والأشعة المقطعية والتصوير بالرنين المغناطيسي. تأكد من أداء نماذج الذكاء الاصطناعي بشكل ممتاز في التشخيص والعلاج، مسترشدة بتصنيف بيانات الخبراء. احصل على نتائج أفضل للمرضى بفضل رؤى التصوير الفائقة.

شرح بالفيديو

شرح الفيديو

تطوير الذكاء الاصطناعي في مجال الرعاية الصحية من خلال شرح تفصيلي بالفيديو. شحذ تعلم الذكاء الاصطناعي من خلال التصنيفات والتقسيمات في اللقطات الطبية. قم بتحسين الذكاء الاصطناعي الجراحي ومراقبة المريض لتحسين تقديم الرعاية الصحية والتشخيص.

شرح نصي

تبسيط عملية تطوير الذكاء الاصطناعي الطبي باستخدام البيانات النصية المشروحة بخبرة. قم بتحليل وإثراء كميات كبيرة من النصوص بسرعة، بدءًا من الملاحظات المكتوبة بخط اليد وحتى تقارير التأمين. ضمان رؤى دقيقة وقابلة للتنفيذ للتقدم في مجال الرعاية الصحية.

الشرح الصوتي

استفد من خبرة البرمجة اللغوية العصبية لتعليق البيانات الصوتية الطبية وتصنيفها بدقة. صمم أنظمة مساعدة صوتية لإجراء عمليات سريرية سلسة ودمج الذكاء الاصطناعي في العديد من منتجات الرعاية الصحية التي يتم تنشيطها بالصوت. تعزيز دقة التشخيص من خلال تنظيم البيانات الصوتية بواسطة خبراء.

الترميز الطبي

قم بتبسيط التوثيق الطبي عن طريق تحويله إلى رموز عالمية باستخدام الترميز الطبي المدعم بالذكاء الاصطناعي. ضمان الدقة وتعزيز كفاءة الفوترة ودعم تقديم خدمات الرعاية الصحية بسلاسة من خلال مساعدة الذكاء الاصطناعي المتطورة في ترميز السجلات الطبية.

عملية الشرح الطبي

تختلف عملية التعليقات التوضيحية عمومًا حسب متطلبات العميل ولكنها تتضمن بشكل رئيسي:

الخبرة نطاق

المرحلة 1: الخبرة الفنية في المجال (فهم إرشادات النطاق والتعليقات التوضيحية)

موارد التدريب

المرحلة 2: تدريب الموارد المناسبة للمشروع

وثائق qa

المرحلة 3: دورة التغذية الراجعة وضمان الجودة للوثائق المشروحة

حالات استخدام التعليقات الطبية

تعمل خوارزميات الذكاء الاصطناعي والتعلم الآلي المتقدمة على إحداث تحول في الرعاية الصحية من خلال الاستفادة من العمليات الطبية المختلفة. تتيح هذه التقنيات المتطورة أتمتة الرعاية الصحية، مما يؤدي إلى تعزيز الكفاءة والدقة ورعاية المرضى. لفهم تأثيرها المحتمل بشكل أفضل، دعنا نستكشف حالات الاستخدام التالية:

طب الأشعة

طب الأشعة

تعمل خدمة التعليقات التوضيحية لصور الأشعة لدينا على تحسين تشخيصات الذكاء الاصطناعي وتتضمن طبقة إضافية من الخبرة. يتم تصنيف كل فحص بالأشعة السينية والتصوير بالرنين المغناطيسي والتصوير المقطعي بدقة ومراجعته من قبل خبير متخصص. تعمل هذه الخطوة الإضافية في التدريب والمراجعة على تعزيز قدرة الذكاء الاصطناعي على اكتشاف التشوهات والأمراض. إنه يعزز الدقة قبل التسليم لعملائنا.

أمراض القلب

أمراض القلب

تعمل التعليقات التوضيحية للصور التي تركز على أمراض القلب على تحسين تشخيصات الذكاء الاصطناعي. نحن نستعين بخبراء أمراض القلب الذين يقومون بتسمية الصور المعقدة المتعلقة بالقلب وتدريب نماذج الذكاء الاصطناعي لدينا. قبل أن نرسل البيانات إلى العملاء، يقوم هؤلاء المتخصصون بمراجعة كل صورة لضمان الدقة العالية. تمكن هذه العملية الذكاء الاصطناعي من اكتشاف أمراض القلب بدقة أكبر.

طب الأسنان

طب الأسنان

تقوم خدمة التعليقات التوضيحية للصور في طب الأسنان بتسمية صور الأسنان لتعزيز أدوات التشخيص التي تعتمد على الذكاء الاصطناعي. من خلال التحديد الدقيق لتسوس الأسنان ومشكلات المحاذاة وحالات الأسنان الأخرى، تعمل الشركات الصغيرة والمتوسطة لدينا على تمكين الذكاء الاصطناعي من تحسين نتائج المرضى ودعم أطباء الأسنان في التخطيط الدقيق للعلاج والكشف المبكر.

خبرتنا

1. التعرف على الكيان السريري / الشرح

يتوفر قدر كبير من البيانات والمعرفة الطبية في السجلات الطبية بشكل غير منظم بشكل رئيسي. يتيح لنا التعليق التوضيحي للكيان الطبي تحويل البيانات غير المهيكلة إلى تنسيق منظم.

شرح الكيان السريري
صفات الطب

2. الإسناد الشرح

2.1 سمات الطب

يتم توثيق الأدوية وخصائصها في كل سجل طبي تقريبًا ، وهو جزء مهم من المجال السريري. يمكننا تحديد السمات المختلفة للأدوية والتعليق عليها وفقًا للإرشادات.

2.2 سمات بيانات المختبر

غالبًا ما تكون بيانات المختبر مصحوبة بخصائصها في السجل الطبي. يمكننا تحديد السمات المختلفة لبيانات المختبر والتعليق عليها وفقًا للإرشادات.

سمات بيانات المختبر
سمات قياس الجسم

2.3 سمات قياس الجسم

غالبًا ما يكون قياس الجسم مصحوبًا بصفاتهم في السجل الطبي. تتكون في الغالب من العلامات الحيوية. يمكننا تحديد السمات المختلفة لقياس الجسم والتعليق عليها.

3. شروح NER الخاصة بالأورام

جنبًا إلى جنب مع شرح NER الطبي العام ، يمكننا أيضًا العمل على التعليقات التوضيحية الخاصة بالمجال مثل علم الأورام ، والأشعة ، وما إلى ذلك ، فيما يلي كيانات NER الخاصة بالأورام التي يمكن تحريكها - مشكلة السرطان ، وعلم الأنسجة ، ومرحلة السرطان ، ومرحلة TNM ، ودرجة السرطان ، والبعد ، الحالة السريرية ، اختبار علامة الورم ، طب السرطان ، جراحة السرطان ، الإشعاع ، دراسة الجينات ، كود الاختلاف ، موقع الجسم

شرح محدد لعلم الأورام
شرح التأثير الضار

4. تأثير عكسي NER وعلاقة الشرح

جنبًا إلى جنب مع تحديد الكيانات والعلاقات السريرية الرئيسية والتعليق عليها ، يمكننا أيضًا توضيح الآثار الضارة لبعض الأدوية أو الإجراءات. النطاق على النحو التالي: وسم الآثار الضارة والعوامل المسببة لها. تحديد العلاقة بين التأثير المعاكس وسبب التأثير.

5. العلاقة الشرح

بعد تحديد الكيانات السريرية والتعليق عليها ، نقوم أيضًا بتعيين العلاقة ذات الصلة بين الكيانات. قد توجد علاقات بين مفهومين أو أكثر.

شرح العلاقة

6. الشرح التوكيد

إلى جانب تحديد الكيانات والعلاقات السريرية ، يمكننا أيضًا تعيين حالة الكيانات السريرية ونفيها وموضوعها.

حالة نفي الموضوع

7. الشرح الزمني

يساعد شرح الكيانات الزمنية من السجل الطبي في بناء جدول زمني لرحلة المريض. يوفر مرجعًا وسياقًا للتاريخ المرتبط بحدث معين. فيما يلي كيانات التاريخ - تاريخ التشخيص ، تاريخ الإجراء ، تاريخ بدء العلاج ، تاريخ انتهاء العلاج ، تاريخ بدء الإشعاع ، تاريخ انتهاء الإشعاع ، تاريخ القبول ، تاريخ التفريغ ، تاريخ الاستشارة ، تاريخ الملاحظة ، البداية.

الشرح الزمني
شرح القسم

8. قسم الشرح

يشير إلى عملية التنظيم المنتظم ، ووضع العلامات ، والتصنيف المنتظم لأقسام أو أجزاء مختلفة من الوثائق أو الصور أو البيانات المتعلقة بالرعاية الصحية ، أي شرح الأقسام ذات الصلة من المستند وتصنيف الأقسام إلى أنواعها الخاصة. يساعد هذا في إنشاء معلومات منظمة ويمكن الوصول إليها بسهولة ، والتي يمكن استخدامها لأغراض مختلفة مثل دعم القرار السريري ، والبحوث الطبية ، وتحليل بيانات الرعاية الصحية.

9. ICD-10-CM & CPT Coding

شرح رموز ICD-10-CM و CPT وفقًا للإرشادات. لكل رمز طبي معنون ، سيتم أيضًا شرح الدليل (مقتطفات نصية) التي تثبت قرار وضع العلامات جنبًا إلى جنب مع الكود.

Icd-10-cm وترميز cpt
ترميز Rxnorm

10. ترميز RXNORM

شرح أكواد RXNORM وفقًا للإرشادات. لكل رمز طبي معنون ، سيتم أيضًا شرح الدليل (مقتطفات نصية) التي تثبت قرار وضع العلامات جنبًا إلى جنب مع الكود.

11. SNOMED الترميز

شرح أكواد SNOMED وفقًا للإرشادات. لكل رمز طبي معنون ، سيتم أيضًا شرح الدليل (مقتطفات نصية) التي تثبت قرار وضع العلامات جنبًا إلى جنب مع الكود.

ترميز سنوميد
UMLs الترميز

12. ترميز UMLS

شرح أكواد UMLS وفقًا للإرشادات. لكل رمز طبي معنون ، سيتم أيضًا شرح الدليل (مقتطفات نصية) التي تثبت قرار وضع العلامات جنبًا إلى جنب مع الكود.

13. التصوير المقطعي المحوسب

تتخصص خدمة التعليقات التوضيحية للصور لدينا في عمليات التصوير المقطعي المحوسب لوضع علامات دقيقة لتدريب الذكاء الاصطناعي مع التركيز الشديد على الهياكل التشريحية التفصيلية. لا يقوم الخبراء المختصون بمراجعة كل صورة فحسب، بل يتدربون عليها أيضًا للحصول على دقة عالية. تساعد هذه العملية الدقيقة في تطوير أدوات التشخيص.

السيد

14. MRI

تعمل خدمة التعليقات التوضيحية لصور التصوير بالرنين المغناطيسي على تحسين تشخيصات الذكاء الاصطناعي. يقوم خبراؤنا المختصون بتدريب ومراجعة كل عملية مسح للحصول على أقصى قدر من الدقة قبل التسليم. نقوم بتسمية فحوصات التصوير بالرنين المغناطيسي بدقة لتعزيز التدريب على نماذج الذكاء الاصطناعي. تساعدهم هذه العملية على تحديد الحالات الشاذة والهياكل. عزز الدقة في التقييمات الطبية وخطط العلاج من خلال خدماتنا.

15. الأشعة السينية

تعمل التعليقات التوضيحية لصورة الأشعة السينية على تحسين تشخيصات الذكاء الاصطناعي. يقوم خبراؤنا بتسمية كل صورة بعناية من خلال تحديد الكسور والتشوهات بدقة. كما يقومون أيضًا بتدريب ومراجعة هذه الملصقات للحصول على أعلى دقة قبل تسليم العميل. ثق بنا لتحسين الذكاء الاصطناعي الخاص بك والحصول على تحليل أفضل للتصوير الطبي.

قصص نجاح

شرح التأمين السريري

تعد عملية الترخيص المسبق أمرًا أساسيًا في ربط مقدمي الرعاية الصحية والدافعين والتأكد من اتباع العلاجات للإرشادات. ساعد شرح السجلات الطبية في تحسين هذه العملية. لقد قام بمطابقة المستندات مع الأسئلة مع اتباع المعايير، وتحسين سير عمل العميل.

المشكلة: كان لا بد من إجراء شرح توضيحي لـ 6,000 حالة طبية ضمن جدول زمني صارم بدقة، نظرًا لحساسية بيانات الرعاية الصحية. كان هناك حاجة إلى الالتزام الصارم بالمبادئ التوجيهية السريرية المحدثة ولوائح الخصوصية مثل HIPAA لضمان جودة التعليقات التوضيحية والامتثال لها.

حل: لقد قمنا بشرح أكثر من 6,000 حالة طبية، وربطنا الوثائق الطبية مع الاستبيانات السريرية. وهذا يتطلب ربط الأدلة بالاستجابات بدقة مع الالتزام بالمبادئ التوجيهية السريرية. وكانت التحديات الرئيسية التي تم تناولها هي المواعيد النهائية الضيقة لمجموعة كبيرة من البيانات والتعامل مع المعايير السريرية المتطورة باستمرار.

شرح البيانات الطبية

أسباب اختيار Shaip كشريكك الجدير بالثقة للتعليقات التوضيحية الطبية

مجتمع

مجتمع

فرق متخصصة ومدربة:

  • أكثر من 30,000 متعاون لإنشاء البيانات ووضع العلامات وضمان الجودة
  • فريق إدارة المشروع المعتمد
  • فريق تطوير المنتجات من ذوي الخبرة
  • فريق تحديد مصادر المواهب والإعداد
المعالجة:

المعالجة:

يتم ضمان أعلى كفاءة للعملية من خلال:

  • عملية بوابة المرحلة القوية 6 سيجما
  • فريق متخصص من 6 أحزمة سوداء سيجما - أصحاب العمليات الرئيسية والامتثال للجودة
  • حلقة التحسين المستمر وردود الفعل
الانطلاق

الانطلاق

تقدم المنصة الحاصلة على براءة اختراع فوائد:

  • منصة قائمة على الويب من طرف إلى طرف
  • جودة لا تشوبها شائبة
  • أسرع TAT
  • تسليم سلس

لماذا شيب؟

فريق مخصص

تشير التقديرات إلى أن علماء البيانات يقضون أكثر من 80٪ من وقتهم في إعداد البيانات. من خلال الاستعانة بمصادر خارجية ، يمكن لفريقك التركيز على تطوير خوارزميات قوية ، وترك الجزء الممل من جمع مجموعات بيانات التعرف على الكيانات المسماة لنا.

قابلية التوسع

يتطلب نموذج ML المتوسط ​​جمع ووضع علامات على أجزاء كبيرة من مجموعات البيانات المسماة ، الأمر الذي يتطلب من الشركات سحب الموارد من الفرق الأخرى. مع شركاء مثلنا ، نقدم خبراء في المجال يمكن توسيع نطاقهم بسهولة مع نمو أعمالك.

جودة أفضل

سيقوم خبراء المجال المخصصون ، الذين يقومون بالتعليق التوضيحي اليومي واليوم الخارجي - في أي يوم - بعمل متفوق عند مقارنتهم بالفريق الذي يحتاج إلى استيعاب مهام التعليقات التوضيحية في جداولهم المزدحمة. وغني عن القول ، أنه يؤدي إلى إنتاج أفضل.

التميز التشغيلي

تساعدنا عملية ضمان جودة البيانات التي أثبتت جدواها ، وعمليات التحقق من صحة التكنولوجيا ، والمراحل المتعددة لضمان الجودة ، على تقديم أفضل جودة في فئتها تتجاوز التوقعات.

الأمان مع الخصوصية

نحن معتمدون للحفاظ على أعلى معايير أمن البيانات مع الخصوصية أثناء العمل مع عملائنا لضمان السرية

أسعار تنافسية

بصفتنا خبراء في تنسيق وتدريب وإدارة فرق العمال المهرة ، يمكننا ضمان تسليم المشاريع في حدود الميزانية.

شايب اتصل بنا

هل تبحث عن خبراء التعليقات التوضيحية للرعاية الصحية لمشاريع معقدة؟

اتصل بنا الآن لمعرفة كيف يمكننا جمع مجموعة البيانات والتعليق عليها لحل AI / ML الفريد الخاص بك

  • بالتسجيل ، أنا أتفق مع Shaip سياسة الخصوصية و شروط الخدمة وأقدم موافقتي على تلقي اتصالات تسويقية B2B من Shaip.

يعد التعرف على الكيان المحدد جزءًا من معالجة اللغة الطبيعية. الهدف الأساسي من NER هو معالجة البيانات المهيكلة وغير المهيكلة وتصنيف هذه الكيانات المسماة إلى فئات محددة مسبقًا. تتضمن بعض الفئات الشائعة الاسم والموقع والشركة والوقت والقيم النقدية والأحداث والمزيد.

باختصار ، يتعامل NER مع:

التعرف على الكيان المُسمى / اكتشافه - تحديد كلمة أو سلسلة من الكلمات في مستند.

تصنيف كيان مسمى - تصنيف كل كيان تم اكتشافه إلى فئات محددة مسبقًا.

تساعد معالجة اللغة الطبيعية على تطوير آلات ذكية قادرة على استخلاص المعنى من الكلام والنص. يساعد التعلم الآلي هذه الأنظمة الذكية على مواصلة التعلم من خلال التدريب على كميات كبيرة من مجموعات بيانات اللغة الطبيعية. بشكل عام ، يتكون البرمجة اللغوية العصبية من ثلاث فئات رئيسية:

فهم بنية اللغة وقواعدها - النحو

اشتقاق معاني الكلمات والنص والكلام والتعرف على العلاقات - الدلالات

التعرف على الكلمات المنطوقة والتعرف عليها وتحويلها إلى نص - كلام

بعض الأمثلة الشائعة لتصنيف كيان محدد مسبقًا هي:

شخص: مايكل جاكسون ، أوبرا وينفري ، باراك أوباما ، سوزان ساراندون

اﻟﻌﻨﻮان كندا ، هونولولو ، بانكوك ، البرازيل ، كامبريدج

التنظيم وجدولة المواعيد: سامسونج ، ديزني ، جامعة ييل ، جوجل

مرة: 15.35 ، 12 مساءً ،

الطرق المختلفة لإنشاء أنظمة NER هي:

الأنظمة المستندة إلى القاموس

الأنظمة المستندة إلى القواعد

الأنظمة القائمة على التعلم الآلي

تبسيط دعم العملاء

كفاءة الموارد البشرية

تصنيف المحتوى المبسط

تحسين محركات البحث

توصية المحتوى الدقيق